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ABSTRACT: The effects of the diameter, gauge length,
and volume of carbon fibers on the tensile properties and
their variation are discussed on the basis of the weak-link
theory and Weibull distribution in a single-filament test. As
far as variation is concerned, the stress of carbon fibers
should be obtained by the division of the force not by the
mean cross section of all the fibers but by the cross section of
individual fibers because of the diameter variation. The

volume effect of carbon fibers influences not only the mean
of the tensile properties but also their variation. The exper-
imental results indicate that the volume dependence in the
radial direction is much bigger than that in the axial direc-
tion. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101:
3175–3182, 2006
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INTRODUCTION

Carbon fibers are high-performance fibers widely
used as reinforcements in composites. The mechanical
behavior of fiber-reinforced composites is dependent,
to a great extent, on the tensile properties of the rein-
forcing fibers. Therefore, the tensile strength of carbon
fibers is the most important factor for the strength of
their composites. However, the tensile strength of car-
bon fibers shows a large scatter and remarkable size
dependence.1 Therefore, it cannot be described with a
mean value only;2 the variation of the carbon-fiber
strength is more important in characterizing the ten-
sile properties of carbon fibers.

In fact, the strength of carbon fibers, as described by
Griffith’s theory, depends on various flaws or, more
precisely, the worst flaw (if the failure of carbon fibers
is caused by a single flaw) or a combination of the
worst flaws (if the failure of carbon fibers is caused by
several flaws) that exist in the fibers. If the part of the
fiber in which the worst flaw or a combination of the
worst flaws lies is the weak link or the weakest link,
the fracture of the carbon fibers relies only on the
strength of the fiber weak link (FWL). The severity and
structure of FWLs are the fundamental factors that
influence the tenacity, strength variation, or distribu-
tion of carbon fibers.3

Because the occurrence of flaws within a fiber is
random by nature, the probability of encountering a

severe FWL becomes greater as the sample volume
increases. The inverse dependence of the tensile
strength on the sample volume has been reported.
Moreton4 stressed the tensile strength of carbon fibers
at different gauge lengths in his experiments. The
results showed that the strength of carbon fibers with
the same diameter decreased with an increase in the
specimen length. Tetsuy and Takashi5 found that the
strength of carbon fibers was dependent not only on
the fiber length but also on the fiber diameter and that
the size dependence of the strength in the radial di-
rection was 10 times larger than the dependence in the
axial direction.

On the other hand, it is well known that tensile
testing carbon fibers is quite difficult, and very high
variation partly results from the test itself because of
the brittleness of carbon fibers. Because of the influ-
ence of the experimental operation and adhesive ef-
fect, the actual gauge length is not the same as the set
one; that is, there is variation of the gauge length.
Meanwhile, the diameter is different from fiber to
fiber; the measurement of the fiber profile is advised.

The variation of the strength of carbon fibers can be
characterized by its distribution. The large number of
experimental data in carbon-fiber tensile tests indi-
cates that if the volume of all the sample is the same,
the strength distributions of the carbon fibers can be
fitted to a two-parameter Weibull function,1,6,7 which
is based on the assumption that all the samples have
the same volume and form:

P � 1 � exp� � ��

�0
�m� (1)
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where P is the cumulative failure probability of a fiber
at a stress less than or equal to stress �, �0 is the scale
parameter, and m is the Weibull shape parameter that
describes the variability of the failure strength. The
rearrangement of the Weibull cumulative expression
gives the following equation:

ln ln� 1
1 � P� � m ln � � m ln �0 (2)

Then, the scale and shape parameters can be ob-
tained from the linear fitting of ln ln[1/(1 � P)] and ln
�. However, there exist different sorts of flaws in
carbon fibers; on the basis of tests of the strength of
fibers over a wide range of lengths, Pickering and
Murray7 suggested that a higher order Weibull ex-
pression should be adopted:

P � 1 � exp� � � �

�0�1�
�m1

� � �

�0�2�
�m2� (3)

To understand the effect of flaws on the tensile
strength, the effect of the volume variation on the
stress variation must be considered, especially for
large diameter variations. In this work, tensile tests of
single carbon fibers were performed to determine the
relationship of the diameter and gauge-length varia-
tion of fibers with the strength distribution and its
variation on the basis of the weak-link theory and
Weibull distribution.

EXPERIMENTAL

Carbon fibers

The polyacrylonitrile (PAN)-based carbon fibers used
for this investigation, with an average diameter of 7.0
�m, were in bundles of 12,000 filaments. To ensure the
consistency of the measurements, all the fibers were
taken from the same bundle.

Tensile tests

Single-fiber samples randomly selected from the same
fiber bundle were fixed by an epoxy resin on paper
window cards without pretension. The fibers were
aligned straight along the central axis of the card to
ensure that the axis of the carbon fibers was parallel to
the direction of stretching. The schematic diagram for
the sample preparation is shown in Figure 1. The fiber
length between the adhesive points is called the gauge
length; it was 15, 30, and 40 mm for the tensile tests.
The adhesive points had to be strong enough to ensure
that the carbon fiber would not be pulled out during
the stretching process.

The cross-sectional area was evaluated from the
minimum fiber diameter, which was measured at the

narrow part of the fiber for more than 10 points per 0.1
mm or at 1 point per millimeter if the fiber was even
in diameter by microscopy for each of the samples one
by one before the tensile test.

The specimen with the paper card was mounted to
clamps of a tensile tester and cut off the paper frame,
as shown in Figure 1; the fiber was then extended to
failure at the downward speed of 5 mm/min. The
force–elongation curve for each measurement was re-
corded, and the corresponding stress–strain (�–�)
curve was calculated according to the minimum di-
ameter measured and the actual gauge length; it was
drawn as illustrated in Figure 2.

ANALYTICAL PROCEDURE

According to the stress–strain curve, the failure stress
(�b) and strain (�b) can be obtained as eqs. (4) and (5),
respectively:

�b �
4F
�d2 � 1010 (GPa) (4)

�b �
�L � OO� � CsF

GL � OO�
� 100% (5)

where F is the force of the fiber in stretching; d repre-
sents the minimum diameter of the fiber; Cs is the
system compliance, which is the elongation resulting
from a load-weighing system, clamps, and grip pene-
tration per unit of force; �L is the absolute displace-
ment of one of the clamps, so the fiber elongation is
equal to �L � OO�; GL is the actual gauge length and
OO� is the displacement for the fiber straightening.

Because the stress–strain curve of carbon fibers is
almost linear, as shown in Figure 2, the initial modu-
lus (E) can be calculated with eq. (6):

Figure 1 Specimen with paper window cards.
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E �
�b

�b
(GPa) (6)

RESULTS AND DISCUSSION

Coincidence between the measured and theoretical
distributions

Measured distribution and fitting distributions

Although a Gaussian distribution is often used to
express the strength distribution of flexible fibers, the
Weibull function indeed fits the strength distribution
of carbon fibers better than a Gaussian distribution
because of the brittleness of carbon fibers. So far, the
Weibull expression has been widely adopted to dis-
cuss the strength of carbon fibers. The Weibull distri-
bution is a versatile distribution that can take on the
characteristics of other types of distributions accord-
ing to the value of its shape parameter. When m is
equal to 1, 2, or 3.57, it represents the exponential,
Raleigh, or Gaussian (normal) distribution, respec-
tively. To verify the statistical distribution of the car-
bon-fiber tensile property, the fittings of Gaussian and
Weibull distributions were carried out. The corre-
sponding correlation coefficients are listed in Table I.
The results in Table I show that a Weibull distribution
for tensile properties F, �b, and E is more fitting than
a Gaussian distribution, except for �b.

Figure 3 presents Weibull plots for the force, stress,
strain, and modulus distribution of carbon fibers. The

best fit straight lines in the Weibull plots, used to
calculate the Weibull parameters, are also shown.

Relationship between the measured data and the
parameters of the weibull distribution

�0 is also called the characteristic strength because it is
the tensile strength at which 1 � e�1 (ca. 63%) of the
sample fractures (P is 1 � e�1). m is equal to the slope
of the Weibull plot, so it is called the Weibull slope
too. m provides a measure of scatter in the distribu-
tion, in that the amount of scatter is inversely propor-
tional to m.

In Table II, CV0m is the measured coefficient of
variability (CV) value; 	0 represents the Weibull scale
parameters F0, �0, E0, and �0; 	0m stands for the tensile
parameter measured when P is 1 � e�1; and � is the
difference rate between the measured value and the-
oretical distribution parameters {i.e., � (%) � [(Mea-
sured value � Theoretical value)/Measured value] �
100}. Because there is no accurate equation expression
between m and CV, the linear fit for 1/m and CV0m is
given here (Fig. 4). Both � in Table II (4.11%)and the
linear fit show that the strain of the carbon fiber did
not fit a Weibull distribution well, and this agrees with
the R2 values of the Weibull plot in Table I.

Comparison of the distributions of carbon fibers

The distribution of the fiber strength is usually de-
scribed by the Weibull equation [eq. (1)]; little is
known about the strain and modulus distribution. As
we can see from Figure 3, the modulus, force, and
stress distribution fit a Weibull distribution better than
a Gaussian distribution, so we think the modulus
distribution and stress distribution can be described
by a Weibull distribution. As for the strain distribu-
tion, the fitting result of Gauss plots is better than that

Figure 2 Calibration of the carbon-fiber strain.

TABLE I
R2 Values of Different Fittings of Carbon-Fiber

Tensile Properties

F �b E �b

Gaussian distribution 0.8925 0.9249 0.8899 0.9705
Weibull plots 0.9918 0.9958 0.9859 0.9195
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of Weibull plots, but the strain distribution should be
of a Weibull distribution theoretically.

If the stress and modulus are both of a Weibull
distribution, their failure probabilities are the follow-
ing: Pstress � 1 � exp[�(�/�0)m�

] and Pmodulus � 1
� exp[�(E/E0)mE

]. Therefore, their survive probabili-
ties are Sstress � exp[�(�/�0)m�

] and Smodulus
� exp[�(E/E0)mE

]. Because strain � is equal to �/E, the
survive probability of the strain is Sstrain � Sstress/
Smodulus � exp[(�/E0)mE

� (�/�0)m�

]. Then, the failure
probability of the strain is Pstrain � 1 � exp[(�/E0)mE

� (�/�0)m�

]. As we can see in Figure 5, the strain
distribution fits well with 1 � exp[(�/1.07)3.02 � (�/
1.05)3.85]. Therefore, the strain distribution is still
thought to be of a Weibull distribution, perhaps just a
higher order Weibull distribution, or there might be
testing error in the strain measurement.

Difference between the stress and force distributions
of the carbon fibers

Figure 3 shows that the value of the shape parameter
obtained from the force distribution is larger than that
of the stress distribution; this means that the variation
of the stress distribution is wider than that of the force
distribution. If all the samples were of the same diam-
eter, the force distribution should be the same as the
stress distribution. The difference between the force
distribution and stress distribution is caused only by

the fiber diameter and its variation. To show the rela-
tionship of the force, stress, and diameter clearly, all
the samples have been divided into eight groups ac-
cording to their fineness, and the curves for the force–
diameter and stress–diameter relationships are drawn
in Figure 6. The maximal, average, and minimal
strength and force values of the carbon fibers in the
eight groups illustrate that there is no obvious rela-
tionship between the force and diameter, whereas the
mean stress of the carbon fiber decreases clearly as the
diameter increases. This results from the volume de-
pendence.

Variation of the sample size and volume
dependence

The Weibull distribution is based on the assumption
that the strength of carbon fibers decreases with their
volume because it is more likely to find flaws of a
critical size in large components than in small ones.
Spencer8 proposed the term fracture zone. He thought
that the breaking of a specimen occurs at a fracture
zone, so that the longer the gauge length is or the
larger the sample diameter is, the larger the probabil-
ity of encountering the weaker fracture zone is, and
the lower the strength is. As shown in Figure 7, the
linear relationship between the volume and strength
exists only when the gauge length or the diameter is
the same. A–C represent the volume–strength rela-
tionship of the samples with 15-, 30-, and 40-mm
gauge lengths, respectively, and with the same mean
diameter of 7.0 �m, and D stands for the mean-vol-
ume/mean-strength relationship of samples A–C.

Sample length effect

According to Peirce’s weak-link theory,9 the measured
mean strength of fibers decreases as the test length is

TABLE II
Comparison of the Measured Data and the Parameters of

the Weibull Distribution

Parameter CV0m(%) m 	0m 	0 � (%)

F 18.84 6.23 13.90 13.90 0
� 19.37 6.04 3.49 3.51 0.57
E 23.36 5.08 244.68 248.08 1.39
� 19.52 6.39 1.46 1.52 4.11

Figure 4 Linear fit for 1/m and CV0m.

Figure 5 Weibull distribution for the strain (number
� 402).
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increased. If a fiber is assumed to be modeled solely as
a chain of n-link series, it will break at its weakest link.
The fiber strength decreases with increasing specimen
length because the probability of encountering a
weaker link increases as the gauge length increases.
The characteristic strengths of two samples of the
same mean diameter but different lengths can be ob-
tained as follows:

�0�2� � �0�1��L1

L2
� 1/m

(7)

where �0(2) and�0(1) are the characteristic strengths for
lengths L2 and L1, respectively.

Usually, the diameter here is the minimum value
along the fiber, whereas the length means the nominal
gauge length. Equation (7) provides an excellent pre-
diction of the fiber strength distributions at longer
gauge lengths, but the extrapolation evaluation to
very short gauge lengths yields a higher fiber strength
than those measured. This indicates that the clamp

effect or end effect is in function; that is, the failure of
some fibers is due to the stress concentrations at each
adhered end.10,11 Besides the end effect, the ineffective
adhesion length and OO� have an affect on the actual
gauge length, too. Therefore, in eq. (7), L should be not
the nominal gauge length but the actual gauge length,
especially when the nominal gauge length is small.

As we can see in Figure 8, the slope of the gauge-
length effect is close to that of D in Figure 7 because
the mean diameter of samples A–C in Figure 7 is close.

Sample diameter effect

In Knox and Whitwell’s theory,12 a fiber is considered
to be composed of n-element chains, which are as-
sumed to be in parallel and have uniformly distrib-
uted strength. The fiber will survive when m of the n
elements still work. The fiber strength decreases with
increasing specimen diameter because the probability
of encountering a group of severer flaws that make

Figure 6 Strength variation of carbon fibers of different diameters.

Figure 7 Dependence of the tensile strength on the fiber
volume (number � 801).

Figure 8 Dependence of the tensile strength on the gauge
length (number � 402).
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more than n � m elements out of work increases as the
area of the cross section increases.

The volume dependence of the strength was ob-
served not only in the axial direction but also in the
radial direction of the fiber. In these experiments, as
shown in Figure 9, the gauge length was 40 mm. The
slope of the gauge-length effect is close to half of that
of A–C in Figure 7, and the difference is caused by the
gauge-length variation, which is not considered here
because it is very limited. From Figure 9, a value for
the slope of �1.82 has been obtained, which is much
smaller than that obtained from the dependence of the
tensile strength on the gauge length (�0.12 in Fig. 7
and �0.15 in Fig. 8). This indicates that the size de-
pendence of the strength in the radial direction is
much stronger than that in the axial direction.

Effect of the sample volume on the stress
distribution

When the volumes of the samples are not considered
constant, the Weibull distribution can be described as
follows:

P�V,�� � 1 � exp� � �V
V0
� � ��

�0
�m� (8)

where V is the volume and V0 is the mean volume.
Because of the variation of the gauge length and di-
ameter, the volume of the samples cannot be regarded
as the same. In this experiment, when the gauge
lengths are the same, the biggest fiber is 68% bigger in
volume than the smallest fiber. Therefore, it is not
advisable to consider the volume of all samples as an
average constant, although the same gauge length is
set. For further explanation, the Weibull plot was ob-
tained from eq. (8), and V0 here is V� to normalize
V/V0. Compared with the m value calculated from

Figure 3 (m � 6.04), the value of m (6.13) obtained
from Figure 10 is a little larger. This means that (1) the
stress variation obtained in this experiment was in-
duced partly by the volume variation, (2) the main
reason for the variation was the effect of FWLs (which
will be introduced in part III of this series), and (3) the
variation of the sample volume was the only factor for
the difference between the shape parameters obtained
from Figure 3 and 10.

CONCLUSIONS

Although force and stress can both be fitted to a
Weibull distribution, the variation of the stress distri-
bution is wider than that of the force distribution. There-
fore, the stress of carbon fibers cannot be obtained by the
division of the force by the mean cross section of all the
fibers directly because the force is related not only to the
stress itself but also to the diameter.

The volume dependence of the carbon fiber (with
both the length and diameter effects included) has
been analyzed. With the same diameter but different
gauge lengths, the volume effect depends on the
gauge length or, more accurately, on the actual gauge
length. With the same gauge length but different di-
ameters, the volume effect relies on the diameter. In
general, the volume dependence in the radial direction
is much larger than that in the axial direction of the
fiber. To understand the effect of flaws on the tensile
strength, the effect of the volume variation on the
stress variation must be considered, especially for a
large diameter variation (CVD � 3.5%).

Carbon fibers are brittle and exhibit a large amount
of scatter in their tensile properties. Sample prepara-
tion and tensile testing for these fibers are difficult and
prone to fiber damage. Therefore, it is necessary to
prepare single-fiber samples carefully and to do a

Figure 9 Dependence of the tensile strength on the fiber
diameter (number � 402).

Figure 10 Weibull plot with volume variation.
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large number of fiber tensile tests to avoid various
operating and systematic errors (which will be dis-
cussed in part II) and achieve successful and accurate
measurements.
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